spinocerebellar ataxia type 6

Spinocerebellar ataxia type 6 (SCA6) is a condition characterized by progressive problems with movement. People with this condition initially experience problems with coordination and balance (ataxia). Other early signs and symptoms of SCA6 include speech difficulties, involuntary eye movements (nystagmus), and double vision. Over time, individuals with SCA6 may develop loss of coordination in their arms, tremors, and uncontrolled muscle tensing (dystonia).

Signs and symptoms of SCA6 typically begin in a person's forties or fifties but can appear anytime from childhood to late adulthood. Most people with this disorder require wheelchair assistance by the time they are in their sixties.

Frequency

The worldwide prevalence of SCA6 is estimated to be less than 1 in 100,000 individuals.

Genetic Changes

Mutations in the *CACNA1A* gene cause SCA6. The *CACNA1A* gene provides instructions for making a protein that forms a part of some calcium channels. These channels transport positively charged calcium atoms (calcium ions) across cell membranes. The movement of these ions is critical for normal signaling between nerve cells (neurons) in the brain and other parts of the nervous system. The *CACNA1A* gene provides instructions for making one part (the alpha-1 subunit) of a calcium channel called CaV2.1. CaV2.1 channels play an essential role in communication between neurons in the brain.

The CACNA1A gene mutations that cause SCA6 involve a DNA segment known as a CAG trinucleotide repeat. This segment is made up of a series of three DNA building blocks (cytosine, adenine, and guanine) that appear multiple times in a row. Normally, the CAG segment is repeated 4 to 18 times within the gene. In people with SCA6, the CAG segment is repeated 20 to 33 times. People with 20 repeats tend to experience signs and symptoms of SCA6 beginning in late adulthood, while people with a larger number of repeats usually have signs and symptoms from mid-adulthood.

An increase in the length of the CAG segment leads to the production of an abnormally long version of the alpha-1 subunit. This version of the subunit alters the location and function of the CaV2.1 channels. Normally the alpha-1 subunit is located within the cell membrane; the abnormal subunit is found in the cell membrane as well as in the fluid inside cells (cytoplasm), where it clusters together and forms clumps (aggregates). The effect these aggregates have on cell functioning is unknown. The lack of normal

calcium channels in the cell membrane impairs cell communication between neurons in the brain. Diminished cell communication leads to cell death. Cells within the cerebellum, which is the part of the brain that coordinates movement, are particularly sensitive to the accumulation of these aggregates. Over time, a loss of cells in the cerebellum causes the movement problems characteristic of SCA6.

Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

In most cases, an affected person has one parent with the condition.

As the altered *CACNA1A* gene is passed down from one generation to the next, the length of the CAG trinucleotide repeat often slightly increases. A larger number of repeats is usually associated with an earlier onset of signs and symptoms. This phenomenon is called anticipation.

Other Names for This Condition

- SCA6
- type 6 spinocerebellar ataxia

Diagnosis & Management

Genetic Testing

 Genetic Testing Registry: Spinocerebellar ataxia 6 https://www.ncbi.nlm.nih.gov/gtr/conditions/C0752124/

Other Diagnosis and Management Resources

 GeneReview: Spinocerebellar Ataxia Type 6 https://www.ncbi.nlm.nih.gov/books/NBK1140

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy https://medlineplus.gov/drugtherapy.html
- Genetic Counseling https://medlineplus.gov/geneticcounseling.html

- Palliative Care https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

- Encyclopedia: Movement--Uncoordinated https://medlineplus.gov/ency/article/003198.htm
- Health Topic: Balance Problems https://medlineplus.gov/balanceproblems.html
- Health Topic: Cerebellar Disorders https://medlineplus.gov/cerebellardisorders.html
- Health Topic: Movement Disorders https://medlineplus.gov/movementdisorders.html

Genetic and Rare Diseases Information Center

 Spinocerebellar ataxia type 6 https://rarediseases.info.nih.gov/diseases/10351/spinocerebellar-ataxia-type-6

Additional NIH Resources

 National Institute of Neurological Disorders and Stroke: Ataxias and Cerebellar or Spinocerebellar Degeneration Information Page https://www.ninds.nih.gov/Disorders/All-Disorders/Ataxias-and-Cerebellar-or-Spinocerebellar-Degeneration-Information-Page

Educational Resources

- Boston Children's Hospital: Dysphagia http://www.childrenshospital.org/conditions-and-treatments/conditions/dysphagia
- Disease InfoSearch: Spinocerebellar ataxia 6
 http://www.diseaseinfosearch.org/Spinocerebellar+ataxia+6/6767
- Johns Hopkins Medicine Department of Neurology and Neurosurgery: What is Ataxia?
 http://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/ movement_disorders/ataxia/conditions/
- Merck Manual Home Edition for Patients and Caregivers: Coordination Disorders http://www.merckmanuals.com/home/brain-spinal-cord-and-nerve-disorders/ movement-disorders/coordination-disorders

- National Ataxia Foundation: Spinocerebellar Ataxia Type 6 http://www.ataxia.org/pdf/NAF%20Web%20Content%20Publication%20SCA6.pdf
- Orphanet: Spinocerebellar ataxia type 6
 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=98758
- Stanford University: HOPES
 http://web.stanford.edu/group/hopes/cgi-bin/hopes_test/?s=sca6#sca6-spinocerebellar-ataxia-type-6
- Washington University, St. Louis: Neuromuscular Disease Center http://neuromuscular.wustl.edu/ataxia/domatax.html#6

Patient Support and Advocacy Resources

- Family Caregiver Alliance https://www.caregiver.org/
- National Ataxia Foundation http://www.ataxia.org/
- National Organization for Rare Disorders (NORD): Autosomal Dominant Hereditary Ataxia
 https://rarediseases.org/rare-diseases/autosomal-dominant-hereditary-ataxia/
- University of Kansas Medical Center Resource List: Ataxia http://www.kumc.edu/gec/support/ataxia.html

GeneReviews

 Spinocerebellar Ataxia Type 6 https://www.ncbi.nlm.nih.gov/books/NBK1140

ClinicalTrials.gov

ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22spinocerebellar+ataxia+type
 +6%22+OR+%22Spinocerebellar+Ataxias%22

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28Spinocerebellar+Ataxias%5 BMAJR%5D%29+AND+%28%28spinocerebellar+ataxia+type+6%5BTIAB%5D %29+OR+%28sca6%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+huma n%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

OMIM

 SPINOCEREBELLAR ATAXIA 6 http://omim.org/entry/183086

Sources for This Summary

- GeneReview: Spinocerebellar Ataxia Type 6 https://www.ncbi.nlm.nih.gov/books/NBK1140
- Ishiguro T, Ishikawa K, Takahashi M, Obayashi M, Amino T, Sato N, Sakamoto M, Fujigasaki H, Tsuruta F, Dolmetsch R, Arai T, Sasaki H, Nagashima K, Kato T, Yamada M, Takahashi H, Hashizume Y, Mizusawa H. The carboxy-terminal fragment of alpha(1A) calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells. Acta Neuropathol. 2010 Apr;119(4):447-64. doi: 10.1007/s00401-009-0630-0. Epub 2009 Dec 31. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20043227

 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841749/
- Kordasiewicz HB, Gomez CM. Molecular pathogenesis of spinocerebellar ataxia type 6.
 Neurotherapeutics. 2007 Apr;4(2):285-94. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17395139
- Rajakulendran S, Schorge S, Kullmann DM, Hanna MG. Dysfunction of the Ca(V)2.1 calcium channel in cerebellar ataxias. F1000 Biol Rep. 2010 Jan 18;2. pii: 4. doi: 10.3410/B2-4.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20948794
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948357/

Reprinted from Genetics Home Reference:

https://ghr.nlm.nih.gov/condition/spinocerebellar-ataxia-type-6

Reviewed: February 2011 Published: March 21, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services